4. FEJEZET

4.1 Alfejezet

1.
$$\max z = 3x_1 + 2x_2$$
 f.h.
$$2x_1 + x_2 + s_1 = 100$$

$$x_1 + x_2 + s_2 = 80$$

$$x_1 + s_3 = 40$$

2. min z =
$$50x_1 + 100x_2$$

f.h. $7x_1 + 2x_2 - e_1 = 28$
 $2x_1 + 12x_2 - e_2 = 243$.

3. min z =
$$3x_1 + x_2$$

f.h. $x_1 - e_1 = 3$
 $x_1 + x_2 + s_2 = 4$
 $2x_1 - x_2 = 3$

mindegyik feladatban minden változó >= 0

4.2 Alfejezet

1. A 3. fejezet 4. ábrájából látjuk, hogy a lehetséges tartomány extremális pontjai a következők:

Lehetséges Bázismegoldás:

H =
$$(0, 0)$$
 $s_1 = 100$, $s_2 = 80$, $s_3 = 40$ $x_1 = x_2 = x_3 = 0$
E = $(40, 0)$ $x_1 = 40$, $s_1 = 20$, $s_2 = 40$ $x_2 = x_3 = s_3 = 0$
F = $(40, 20)$ $x_1 = 40$, $x_2 = 20$, $s_2 = 20$ $x_3 = s_1 = s_3 = 0$
G = $(20, 60)$ $x_1 = 20$, $x_2 = 60$, $s_3 = 20$ $x_3 = s_1 = s_2 = 0$
D = $(0, 80)$ $s_1 = 20$, $x_2 = 80$, $s_3 = 40$ $s_2 = x_1 = x_3 = 0$

2. A 3. fejezet 4. ábrájából látjuk, hogy a megfeleltetés a következő:

```
Extremális pont Lehetséges bázismegoldás E = (3.6, 1.4) x_1 = 3.6, x_2 = 1.4, e_1 = e_2 = 0 B = (0, 14) x_2 = 14, e_2 = 144, e_1 = x_1 = 0 x_1 = 12, e_1 = 56, x_2 = e_2 = 0
```

3.bázisváltozók lehetséges bázismegoldás csúcspont $x_1=150$ $x_2=100$ $s_1=s_2=0$ (150, 100) x_1, x_2 x_1 , s_1 $x_1=200$, $s_1=150$, $x_2=s_2=0$ (200, 0) $x_1=350$, $s_2=-300$, $x_2=s_1=0$ nincs megoldás X_1 , S_2 $x_2=400$, $s_1=-450$, $x_1=s_2=0$ nincs megoldás x_2 , s_1 $x_2=175$, $s_2 = 225$, $x_1=s_1=0$ (0**,** 175) X2, S2

 $s_1=350$, $s_2=400$, $x_1=x_2=0$

(0, 0)

4.3 Alfejezet

 S_1 , S_2

1. z x_1 x_2 s_1 s_2 s_3 jobbo.hányados

•	1		-2	2 0	0		0	0	
•	0	2	1	1 1	0		0	100	 50
•	0	1	1	L 0	1		0	80	80 x_1 belép a bázisba a
•	0	1	() 0	0		1	40	40* 3. sorban
•									
	Z		x_1	x_2	s_1	S ₂	S ₃	jobbo.	hányados
	1		0	-2	0	0	3	120	
	0		0	1	1 	0	-2	20	20* lépjen be x_2 az 1. sorban
	0		0	1	0	1	-1	40	40
	0		1	0	0	0	1	40	nincs ért.
	1		0	0	2	0	-1	160	
	0		0	1	1	0	-2	20	nincs ért.
	0		0	0	-1	1	1	20	20* lépjen be s_3 a 2. sorban
	0		1	0	0	0	1	40	40
	1		 	0	 1	 1	0	18	 0
			 0		 -1				
			 0		 -1	 1	1		
			 1	 0	 1	 -1		20	
	 E	ego.	ah ob 	 ptimá	 lis m	 legol	Ldás,	 s így	az LP feladat optimális 20 , és $s_3 = 20$, $s_1 = s_2 =$
2.	Z		x_1	x_2	s_1	s_2	jobbo	hánya	ados
•	1		-2	- 3	0	0	0		
•	0		1	2	1	0	6	3*	lépjen be x_2 az 1. sorban
-	0		2	1	0	1	8	8	

								_
	0	-1/2	0	3/2	0	9		
	0	1/2	1	1/2	0	3	6	_
sorb	0 an	3/2	0	-1/2 	1 	5 	10/3	- * lépjen be x_1 a 2. -
	Z	x_1	x_2	s_1	s ₂ j	obbo.h	ányado	os
	0	0	0	4/3	1/3	32/3		
	0	0	1	2/3	- 1/3	4/3	 	_
	0	1	0	-1/3	2/3	10/3		_
	32/ x ₁ =		3, x ₂	= 4/	3, s ₁	= s ₂ =	· 0.	
3. z	Χı	\mathbf{x}_2	X3	S ₁	s_2	s_3 jok	obo.hár	nyados
	x ₁ -2				s ₂		obo.hár 	nyados
 1 	 -2 	1 	 -1 	0	0	0		
1 0 0	 -2 3	1 1 	 -1 1	0	0 0	0	0 60	
1 0 0 2.so	 3 1 rban	1 1 	-1 -1 2	0 1 0	0 0 0 1	0	0 60 10	20 10* kerüljön be x_1 a
1 0 0 2.so	 3 1 rban 1	1 1 	-1 1 -2 -1	0	0 0 0 1	0 0	0 60 10	20 10* kerüljön be x_1 a
1 0 0 2.so	 3 1 rban 1 	1 1 1 1 	-1 -1 2 -1 3	0	0	0	0 60 10 20	 20 10* kerüljön be x ₁ a 20
1 0 0 2.so 0 1 	-2 -3 3 1 rban 1 0	1 -1 -1 -1 -1 -1 -1 -4	-1 -1 -2 -1 -3 -5	0 0 0 1	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 60 10 20 20 30	 20 10* kerüljön be x ₁ a 20

1	0	0	3/2	0	3/2	1/2	25
0	0	0	1	1	-1	-2	10
0	1	0	1/2	0	1/2	1/2	15
0	0	1	- 3/2	0	-1/2	1/2	5

Ez egy optimális tábla a következő optimális megoldással: z = 25, $s_1 = 10$, $x_1 = 15$, $x_2 = 5$, $s_2 = s_3 = 0$.

4. Mivel nincs kézenfekvő lehetséges bázismegoldás, nem tudjuk elkezdeni a szimplex algoritmust.

4.4 Alfejezet

1.	Z	x_1	x_2	s_1	s_2	S ₃	jobbo	.hánya	dos
	1	-4	1	0	0	0	0		
	0	2	1	1	0	0	8	8	
2.sc	0 orban	0	1	0	1	0	5	5*	kerüljön be \mathbf{x}_2 a
	0	1	 -1	0	0	1 	4	nincs	ért.
_									
	1	-4	0	0	-1	0	- 5		
	0	2	0	1	-1	0	3		
_	0	0	1	0	1	0	5		

Az aktuális tábla optimális, mivel benne minden változónak nempozitív az együtthatója. Így az LP feladatnak az optimális megoldása: z = -5, s_1 = 3, x_2 = 5, s_3 = 9, x_1 = s_2 = 0. Figyeljük itt meg, hogy az optimális célfüggvényérték egy LP feladatra lehet negatív is.

2. z x_1 x_2 s_1 s_2 jobbo.

1 1 1 0 0 0

0 1 -1 1 0 1

0 1 1 0 1 2 kerüljön \mathbf{x}_2 a 2.sorban a bázisba

0 1 0 0 1 1 9

1	0	0	0	-1	-2	
0	2	0	1	1	3	
0	1	1	0	1	2	

Ez egy optimális tábla,s így az optimális megoldás az LP feladathoz: z = -2, x_1 = 0, s_2 =0, x_2 = 2, s_1 = 3.

4.5 Alfejezet

1. A célfüggvény most $z=4x_1+2x_2$. A feladatot a szimplex algoritmussal oldva meg a táblák következő sorozata adódik:

Z	X1	X ₂	s_1	S ₂	s ₃ jobl	oo.ha	ánya	dos				
1	 -4	-2	0	0	0	0	_					
0	 2	1	1	0	0	100	50					
0	 1	1	0	1	0	80	80					
0 sorban	 1	0	0	0	1	40	40* 	kerüljön 	be	x_1	a :	3.
z	x_1	x_2	s_1	S ₂	s ₃ jobl	00.h	ánya	dos				
1	 0	-2	0	0	4	160	_					
0	 0	1	1	0	-2	20	20*	kerüljön	be	x_2	az	1.

sorban 0 0 1 0 1 -1 40 40

0 1 0 0 0 1 40 40

 Z	x ₁	X2	s ₁	S ₂	S 3	jobbo.
 1	0	0	2	0	0	200
0	0	1	1	0	- 2	20
0	0		 -1	 1	 1	20

0 1 0 0 0 1 40

Ez egy optimális tábla a következő optimális megoldással: z=200, $x_1=40$, $x_2=20$, $s_2=20$, $s_1=s_3=0$. Figyeljük meg,hogy az s_3 nembázis válétozónak zero az együtthatója az optimális tábla 0. sorában . "Bepivotálva" s_3 -t a bázisba a következő alternatív optimális megoldást kapjuk: z=200, $s_3=20$, $x_1=20$, $x_2=60$, $s_1=s_2=0$.

2. z x_1 x_2 s_1 s_2 jobbo.hányados

1	3	- 6	0	0	0	
0	5	7 	1	0	35	- 5 -

0 -1 2 0 1 2 1* kerüljön be x_2 a 2.sorban a b-ba

0 -1/2 1 0 1/2 1

Ez egy optimális tábla a következő optimális megoldással: z = 6, s_1 = 28, x_2 = 1, s_2 = x_1 = 0. Mivel az x_1 nembázis változónak nulla együtthatója van a 0.sorban, x_1 -t bevihetjük a bázisba, s így megkapjuk a következő alternatív optimális megol-

dást: z = 6, $x_1 = 56/17$, $x_2 = 45/17$. Átlagolva ezt a két optimális megoldást kaphatunk egy harmadik optimális megoldást: z = 6, $x_1 = 28/17$, $x_2 = 31/17$.

3. Minden más bázismegoldában s_1 és/vagy s_2 bázisváltozó lesz. Mivel egyetlen jobboldal sem 0, ezért ha s_1 vagy s_2 pivotálás révén bekerül a bázisba, akkor pozitívak lesznek. Mivel

 $z = 10 - 2s_1 - 3s_2, \text{ ezért minden pozitív } s_1 \text{ vagy } s_2$ melletti

megoldásra z<10 áll fenn. Így egyetlen más bázismegoldás sem

lehet optimális.

4. Tegyük fel, hogy $\mathbf{x_1}$ és $\mathbf{x_2}$ mindegyike optimális megoldása (az optimális z = z_0 értékkel) a következő feladatnak:

$$\max z = \mathbf{cx}$$
$$x >= 0$$

felt.h . Ax = b

Hogy megmutassuk, hogy ezen LP feladat optimális megoldásainak halmaza konvex halmaz, elegendő megmutatni, hogy bármely

0<=k<=1 értékre k $\mathbf{x_1}$ + (1-k) $\mathbf{x_2}$ szintén optimális megoldás. Először is, k $\mathbf{x_1}$ + (1-k) $\mathbf{x_2}$ lehetséges megoldás, mivel A(k $\mathbf{x_1}$ + (1-k) $\mathbf{x_2}$) = kA $\mathbf{x_1}$ + (1-k)A $\mathbf{x_2}$ = k \mathbf{b} + (1-k) \mathbf{b} = \mathbf{b} és k $\mathbf{x_1}$ + (1-k) $\mathbf{x_2}$ >=0 következik az $\mathbf{x_1}$ és $\mathbf{x_2}$ nemnegatívitásából. k $\mathbf{x_1}$ + (1-k) $\mathbf{x_2}$ -höz z-értékként z₀ tartozik, mivel \mathbf{c} (k $\mathbf{x_1}$ + (1-k) $\mathbf{x_2}$) = kz₀+ (1-k) $\mathbf{z_0}$ =z₀.

Így k $\mathbf{x_1}$ + $(1-k)\mathbf{x_2}$ szintén optimális megoldás, és az $\mathbf{x_1}$ és $\mathbf{x_2}$ -t összekötő egyenesszakasz minden pontja az eredeti LP feladat optimális megoldása.

- 5a. Nincs, az egyetlen mód arra, hogy egy új változót hozzunk be egy pivotművelettel a bázisba és z-t mégis az optimális értékén tartsuk az, hogy x3-t hozzuk be. Mivel x3-nak negatív együtthatója van minden feltételben, azért nem vihető be a bázisba, s így csak egy optimális bázismegoldás van.
- 5b. Mivel x3-nak 0 együtthatója van a 0-dik sorban,azért növelhetjük z korábbi értékén való megtartása mellett. Azaz, x1 = 2 + c, x3 = c, x2 = 3 + 2c, x4 = 0, z = 2 egy optimális megoldás, minden c >= 0 értékre.Így ennek a feladatnak csak egy optimális bázismegoldása van, mégis végtelen sok opőtimális megoldással rendelkezik.
- 6. Nyilvánvalóan minden olyan lehetséges bázismegoldás, amire $x_5=0$ az optimális. Kipróbálva a bázisváltozók összes olyan kombinációját, amely nem tartalmazza x_5 -t a következő 3 alternatív optimális bázismegoldást kapjuk:

$$\begin{bmatrix} 2 \\ 5 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 7/3 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 7/3 \\ 0 \\ 2/3 \\ 0 \end{bmatrix}$$

Így az összes optimális megoldás halmaza a következő alakba írható:

$$\begin{bmatrix}
2 \\
5 \\
0 \\
0 \\
0
\end{bmatrix} + b \begin{bmatrix}
0 \\
1 \\
2 \\
0 \\
0
\end{bmatrix} + (1-a-b) \begin{bmatrix}
0 \\
7/3 \\
0 \\
2/3 \\
0
\end{bmatrix} = \begin{bmatrix}
2a \\
7/3 + (8a/3) - 4b/3 \\
2b \\
2/3 - (2a/3) - 2b/3) \\
0
\end{bmatrix}$$

ahol $a \ge 0$, $b \ge 0$, és a + b < 1.

4.6 Alfejezet

Mivel x_1 -nek az együtthatója negatív a 0. sorban és nempozitív minden korlátfeltételben, egy nemkorlátos célfüggvényű LP-vel van dolgunk. Az utolsó táblázatból látjuk, hogy ($s_2=0$ esetén)

$$z = 2 + 2x_1$$

 $s_1 = 5$
 $x_2 = 1 + x_1$
 $s_2 = 0$

Így,ha 2 + $2x_1$ = 10,000 vagy x_1 = 4,999 akkor találtunk egy olyan pontot a lehetséges tartományban, melyre z = 10,000. Így z = 10,000, s_1 = 5, x_1 = 4,999, x_2 = 5,000, s_2 = 0 egy olyan

pont a lehetséges tartományban, melyre z>=10,000.

2. Egy minimum feladatra az LP feladat célfüggvénye nemkorlátos, ha van egy olyan változó pozitív együtthatóval a 0. sorban, amelynek nemnegatív együtthatója van minden korlátfeltételben. Az adott feladatra a következő táblázatot kapjuk:

Z	x_1	x_2	s_1	s_2	jobbo.
1	2	3	0	0	0
0	1	-1	1	0	1
0	1	-2 -2	0	1	2

Itt x_2 tetszőlegesen nagy lehet. Mivel minden egyes egység, amivel x_2 -t növeljük z-t 3 egységgel csökkenti, z-t olyan kicsivé tehetjük, amilyenné csak akarjuk.

- 3. Az adott táblázat alapján az adódik, hogy $x_2>=0$ esetén a $z=2x_2$, $x_1=0$, $x_3=3+x_2$, $x_4=4$ kordinátáju pontok lehetséges megoldások. x_2 -t nagyra növelve látható, hogy ennek az LP feladatnak a célfüggvénye nemkorlátos (a lehetséges tartományon).
- 4. z x1 x2 s1 s2 jobbo.

x1 belép a bázisb

z x1 x2 s1 s2 jobbo.

Az $\times 2$ oszlopa itt mutatja, hogy ez egy nemkorlátos LP probléma.

4.7 Alfejezet

1. z x_1 x_2 s_1 s_2 s_3 jobbo. hányados

1	- 5	- 3	0	0	0	0
0	4	2	1	0	0	12 3

0 4 1 0 1 0 10 2.5* lépjen be x1 a

bázisba

0 1 1 0 0 1 4

1 0 -7/4 0 5/4 0 50/4

0 0 1 1 -1 0 2 2* lépjen be x_2 az

1.sorban

a bázisba

0 1 1/4 0 1/4 0 10/4 10 0 0 3/4 0 -1/4 1 3/2 2*

A minimum érték a hányados tesztben azt mutatja, hogy a következő lehetséges bázismegoldás degenerált lesz.

z x_1 x_2 s_1 s_2 s_3 jobbo.hányados 1 0 0 7/4 -1/2 0 16 0 0 1 1 -1 0 2 nincs ért. 0 1 0 -1/4 1/2 0 2 4 0 0 0 -3/4 1/2 1 0 0* lépjen be s_2 a 3.

sorban a bázisba

z x_1 x_2 s_1 s_2 s_3 jobbo.hányados

1 0 0 1 0 1 16

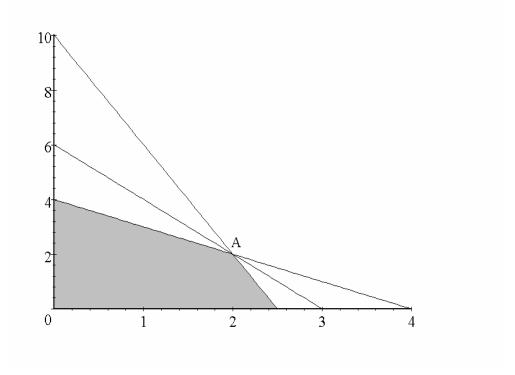
0 0 1 -1/2 0 2 2

0 1 0 1/2 0 -1 2

0 0 0 -3/2 1 2 0

Ez egy optimális tábla a következő optimális megoldással: z = 16, $x_1 = x_2 = 2$, $s_2 = s_3 = s_1 = 0$. Ez az lbm bázisváltozók következő 3 csoportja által megadott bázisoknak felel meg: $\{x_1, x_2, s_1\}$, $\{x_1, x_2, s_2\}$ és $\{x_1, x_2, s_3\}$. A degeneráció abból következik, hogy 3 = 2 + 1 feltételi egyenes egyetlen pontban (A = (2, 2) pont az ábrán)

metszi egymást.



2.	Z	x ₁	X ₂	s ₁	s ₂	jobbo.
	1	1	1	0	0	0
	0	1	1	1	0	1* lépjen be x_1 az 1. sorban
	0	-1	1	0	1	0

Z	x_1	x_2	s_1	s_2	jobbo.
1	0	0	-1	0	-1
0	1	1	1	0	1
0	0	2	1	1	1

Ez egy optimális tábla a következő optimális megoldással: z = -1, x_1 = 1, x_2 = 0.

3.
$$z$$
 x_1 x_2 x_3 x_4 s_1 s_2 jobbo.

1 -2 -3 1 12 0 0 0

0	-2	-9	1	9	1	0	0
0	1/3	1 -	-1/3	-2	0	1	0
Z	x_1	x_2	Х3	X4	s_1	S ₂	jobbo.
1	-1	0	0	6	0	3	0
0	1	0	-2	-9	1	9	0
0	1/3	1 -	-1/3	-2	0	1	0
1	0	0	-2	-3	1	12	0
0	1	0	-2	-9	1	9	0
0	0	1	1/3	1 -	-1/3	-2	0

Z	x_1	x_2	Х3	X_4	s_1	s_2	jobbo.
1	0	3	-1	0	0	6	0
0	1	9	1	0	-2	-9	0
0	0	1	1/3	1 -	-1/3	-2	0

Z	x_1	x_2	x_3	x_4	s_1	s_2	jobbo.
1	1	12	0	0	- 2	- 3	0
0	1	9	1	0	-2	-9	0
0	-1/3	-2	0	1	1/3	1	0
Z	x_1	x_2	X ₃	x_4	s_1	s_2	jobbo.
1	0	6	0	3	-1	0	0
0	-2	-9	1	9	1	0	0
0	_1 / 3	-2	0	1	1/3	1	0

1	-2	-3	1	12	0	0	0	
0	- 2	- 9	1	9	1	0	0	
0	1/3	1 -	-1/3	-2	0	1	0	

Mind az első, mind az utolsó táblában s_1 és s_2 bázis változók, de nem kaptunk egy optimális táblát. Így, ha alkalmazzuk a szimplex módszert a hányados tesztnél az 1. sort választva, akkor ismételten ciklizálni fogunk az előbb mutatott táblák között.

4.8 Alfejezet

1. Kiegészítő- , levonandó eltérés- és mesterséges változók bevezetése után kapjuk:

min z =
$$4x_1 + 4x_2 + x_3 + Ma_3$$

f.h. $x_1 + x_2 + x_3 + s_1 = 2$
 $2x_1 + x_2 + s_2 = 3$
 $2x_1 + x_2 + 3x_3 - e_3 + a_3 = 3$

Kiküszöbölve az a_3 bázisváltozót a z $-4x_1$ $-4x_2$ $-x_3$ $-Ma_3$ = 0-ból kapjuk: z + $(2M - 4)x_1$ + $(M - 4)x_2$ + $(3M - 1)x_3$ $-Me_3$ = 3M.

A szimplex módszer most a következőt eredményezi:

Z	x_1	x_2	Х3	s_1	S ₂	e_3	a ₃	jobbo.
1	2M-4	M-4	3M-1	0	0	-M	0	3M
0	1	1	1	1	0	0	0	2
0	2	1	0	0	1	0	0	3
0	2	1	3	0	0	-1	1	3
Z	x_1	x_2	x ₃	s_1	s_2	e ₃	a_3	jobbo.
1	-10/3	-11/3	0	0	0	-1/3	1/3-	-M 1
0	1/3	2/3	0	1	0	1/3	-1/3	3 1
0	2	1	0	0	1	0	0	3
0	2/3	1/3	1	0	0	-1/3	1/3	3 1

Ez egy optimális tábla a következő optimális megoldással:

$$z = 1$$
, $s_1 = 1$, $s_2 = 3$, $x_3 = 1$, $x_2 = x_1 = e_3 = 0$.

2. Kiegészítő- , levonandó eltérés- és mesterséges változók bevezetése után kapjuk:

 $\min z = 2x_1 + 3x_2 + Ma_1$

f.h.
$$2x_1 + x_2 - e_1 + a_1 = 4$$

 $-x_1 + x_2 + s_2 = 1$

 a_1 -nek a z - $2x_1$ - $3x_2$ - Ma_1 = 0-ból való kiküszöbölése után kapjuk: z - (2 - $2M)x_1$ + (M - $3)x_2$ - Me_1 = 4M. Alkalmazva szimplex módszert kapjuk:

x_1	\mathbf{x}_2	e_1	s_2	a_1	jobbo.
-2+2M	M-3	-M	0	0	4M
2	1	-1	0	1	4
-1	1	0	1	0	1
0	-2	-1	0	1-M	4
1	1/2	-1/2	0	1/2	2
0	3/2	-1/2	1	1/2	3
	-2+2M 2 -1 0 1	-2+2M M-3 2 1 -1 1 0 -2 1 1/2	-2+2M M-3 -M 2 1 -1 -1 1 0 0 -2 -1 1 1/2 -1/2	-2+2M M-3 -M 0 2 1 -1 0 -1 1 0 1 0 -2 -1 0 1 1/2 -1/2 0	-2+2M M-3 -M 0 0 2 1 -1 0 1 -1 1 0 1 0 0 -2 -1 0 1-M 1 1/2 -1/2 0 1/2

Ez egy optimális tábla a következő optimális megoldással: z=4, $x_1=2$, $s_2=3$, $e_1=x_1=0$.

3. Vegyük észre, hogy mivel $x_1 + x_2 = 3$, az

 $x_1 + x_2 >= 3$ feltétel automatikusan teljesül,s így ezt figyelmen kívül hagyhatjuk. Ekkor a következő a megoldandó feladatunk:

 $\max z = 3x_1 + x_2 - Ma_2$

f.h.
$$2x_1 + x_2 + s_1 = 4$$

$$x_1 + x_2 + a_2 = 3$$

Kiküszöbölve a_2 -t z - $3x_1$ - x_2 + Ma_2 -ból kapjuk: z - $(M + 3)x_1$ - $(M + 1)x_2$ = -3M. A szimplex módszert alkalmazva:

Z	x_1	x_2	s_1	a_2	jobbo.
1	-M-3	-M-1	0	0	-3M
0	2	1	1	0	4
0	1	1	0	1	3

1	0	(1-M)/2	(M + 3)/2	0	6-M
0	1	1/2	1/2	0	2
0	0	1/2	-1/2	1	1

Z	x_1	x_2	s_1	a ₂	jobbo.
1	0	0	2	M-1	5
0	1	0	1	-1	1
0	0	1	-1	2	2

Ez egy optimális tábla a következő optimális megoldással: z = 5, $x_1 = 1$ $x_2 = 2$, $s_1 = 0$.

4. Eltérés- és mesterséges változók bevzetése után kapjuk: min z = $3x_1$ + Ma_1 + Ma_2

f.h.
$$2x_1 + x_2-e_1 + a_1 = 6$$

 $3x_1 + 2x_2 + a_2 = 4$

Kiküszöbölve a_1 és a_2 -t a z-3x₁-Ma₁-Ma₂ = 0 egyenletből kapjuk: z + (5M-3)x₁ + 3Mx₂-Me₁ = 10M. A szimplex módszerrel most a következőt kapjuk:

Z	x_1	x_2	e_1	a_1	a_2	RHS
1	5M-3	3M	-M	0	0	10M
0	2	1	-1	1	0	6
0	3	2	0	0	1	4

1	0	(6-M)/3	-M	0	(3-5M)/3	10M/3 + 4
0	0	-1/3	-1	1	-2/3	10/3
0	1	2/3	0	0	1/3	4/3

Ez egy optimális tábla. Vegyük észre azonban, hogy az a_1 mesterséges változós pozitív ($a_1=10/3$). Így az eredeti feladatnak nincs lehetséges megoldása.

4.9 Alfejezet

- 1. Az előző alfejezet feladatainak megoldása:
- 1. Miután kiküszöböltük az a_3 mesterséges változót a $w-a_3=0$ -ból, elvégezzük az I. fázist.

,	W	x ₁	X ₂	X3	s ₁	s ₂	e ₃	a ₃	jobbo.
	 1 	2	1	3	0	0	-1	0	3
	0	1	1	1	1	0	0	0	2
	0	2	1	0	0	1	0	0	3
	0	2	1	3	0	0	-1	1	3
	1	0	0	0	0	0	0	-1	0
	0	1/3	2/3	0	1	0	1/3	-1/3	1
	0		1				0		3
							-1/3		

Ez egy optimális, I. fázis utáni tábla. Most elhagyjuk a_3 oszlopát és kiküszöböljük az x_3 változót a II. fázisbeli 0. sorból $(z - 4x_1 - 4x_2 - x_3 = 0)$, aminek eredményeként $z - 10x_1/3 - 11x_2/3 - e_3/3 = 1$, mutatva, hogy az aktuálus tábla optimális. Így az optimális megoldás az LP feladathoz: z = 1, $x_2 = x_1 = 0$, $x_3 = 1$.

2. Az I. fázisbeli célfüggvény: min w = a_1 . Kiküszöbölve a_1 -t w - a_1 =0-ból: w +2 x_1 + x_2 - e_1 =4. Végrehajtva az I. fázist kapjuk a következőt:

W	x_1	x_2	e_1	s_2	a_1	jobbo.
1	2	1	-1	0	0	4
0	2	1	-1	0	1	4
0	-1	1	0	1	0	1
1	0	0	0	0	-1	0
0	1	1/2	-1/2	0	1/2	2
0	0	3/2	-1/2	1	1/2	3

·____

Ez egy optimális I-fázisbeli tábla. Most kiküszöböljük x_1 -t z - $2x_1$ - $3x_2$ = 0 -ból és így kapjuk: z - $2x_2$ - e_1 =4. Ez azt mutatja, hogy táblánk a II.fázis szempontjából is optimális. Így az eredeti LP optimális megoldása: z = 4, x_1 = 2, x_2 = 0.

3. Ahogy már megindokoltuk az előző alfejezet 3. feladatának megoldásánál, elhagyhatjuk az

 $x_1 + x_2 >= 3$ feltételt. Ekkor a 0. sor az 1. fázisban: s w - $a_2 = 0$. Kiküszöbölve a_2 -t kapjuk: w + x_1 + $x_2 = 3$. Az 1. fázis a következőképp folytatódik:

W	x_1	x_2	s_1	a_2	jobbo.
1	1	1	0	0	3
0	2	1	1	0	4
0	1	1	0	1	3
1	0	1/2	-1/2	0	1
0	1	1/2	1/2	0	2
0	0	1/2	-1/2	1	1
W	x ₁	X ₂	s_1	a ₂	jobbo.
1	0	0	0	-1	0
0	1	0	1	-1	1
0	0	1	-1	2	2

Ez egy optimális, I.fázisbeli tábla. Kiküszöbölve x_1 és x_2 -t z - $3x_1$ - x_2 = 0-ból kapjuk: z + $2s_1$ = 5, sígy ez már egy optimális tábla. És az eredeti LP feladat egy optimális megoldása: z =5, x_1 =1, x_2 =2.

4. Kiküszöbölve a_1 és a_2 -t w - a_1 - a_2 = 0-ból kapjuk: w + $5x_1$ + $3x_2$ - e_1 = 10. Végrehajtva az I. fázist adódik:

W	x_1	x_2	e_1	a ₁	a_2	jobbo.
1	5	3	-1	0	0	10
0	2	1	-1	1	0	6

0	3	2	0	0	1	4
W	x ₁	x_2	e_1	a ₁	a_2	jobbo.
1	0	-1/3	-1	0	-5/3	10/3
0	0	-1/3	-1	1	-2/3	10/3
0	1	2/3	0	0	1/3	4/3

Ez egy optimális I. fázisbeli tábla. Viszont az optimális w-érték 10/3, amely >0. Így az eredeti LP feladatnak nincs optimális megoldása.

4.10 Alfejezet

- 1. Legyen $i_t = i_t' i_t''$ a raktárállomány szintje a t-edik hónap végén. Az eredeti feladat minden feltételében helyettesítsük be i_t -be i_t' - i_t'' -t. Csatoljuk még az $i_t'>=0$ és $i_t''>=0$ előjelkorlátozásokat is. Biztosítandó, hogy a keresletet kielégítjük a 4. negyedév végére, vegyük még hozzá az i_4' - $i_4''>=0$ előjelkorlátozást. Helyettesítsük be i_t -re a fenti kifejezést a célfüggvényben is, ami ekkor a következő lesz: $100i_1' + 110i_1'' + 100i_2' + 110i_2'' + 100i_3' + 110i_3'' + 100i_4' + 110i_4''$.
- 2. Legyen $x_2 = x_2' x_2''$ ahol $x_2' >= 0$ és $x_2'' >= 0$. A szimplex módszer alkalmazásával kapjuk a következőket:

Z	X ₁	x ₂ '	x ₂ ''	s ₁	S ₂	jobbo.
1	-2	-1	1	0	0	0
0	3	1	-1	1	0	6
0	1	1 	-1 	0	1	4
1	0	-1/3	1/3	2/3	0	4
0	1	1/3	-1/3	1/3	0	2
0	0	2/3	-2/3	-1/3	1 1	2

z x_1 x_2 ' x_2 '' x_1 x_2 jobbo.

							-
1	0	0	0	1/2	1/2	5	
0	1	0	0	1/2	-1/2	1	
0	0	1	-1	-1/2	3/2	3	

Ez egy optimális tábla a következő optimális megoldással: z= 5, x_1 = 1, x_2 ' = 3, x_2 '' = 0, x_1 = x_2 = 0. Így az optimális megoldásra x_2 = 3-0 = 3.

- 3. Legyen Wt = A munkások száma a t-edik hónapban.
 It' It'' = It = acél készlet(tonnában) a t-edik
 hónap végén
 - Ht = a t-edik hónap elején munkába állított
 munkások száma
 - Ft = A t-edik hónap elején elbocsátott munkások száma
- Xt = A t-edik hónapban termelt acél mennyisége (tonna). Ekkor a feladat:

4. A megfelelő LP feladat a következő:

és minden változó nemnegatív

max
$$z = z' + z''$$

f.h. $4x_1 + x_2 \le 4$
 $2x_1 - x_2 \le 0.5$

 $2x_1 - 3x_2 = z' - z''$ és minden változó nemegatív.

Figyeljük meg itt a következőket! Egyetlen lehetséges bázismegoldásban sem lehet egyszerre z' és z'' is pozitív. Továbbá, ha $2x_1 - 3x_2 > 0$, akkor z'' = 0 és a célfüggvény a következő lesz: z' + z'' = z' = $2x_1 - 3x_2 = 2x_1 - 3x_2 = 2x_1 - 3x_2 = 3x_2 = 2x_1 - 3$

```
z' + z'' = z'' = |2x_1 - 3x_2|
```

5.Legyen c1 = az öntési terület x-koordinátája, c2 = y-koordinátája, a1 = az összeszerelés és tárolás x-koordinátája, a2 = pedig ugyanennek az y koordinátája. A célfüggvényben a költségeket dollár/nap egységben számolva kapjuk:

```
min z = 4(e'' + w'' + n'' + s'') + 0.8(e1 + w1 + n1 + s1)
+ 0.8(e1' + w1' + n1' + s1') + 0.4(e2' + w2' + n2' + s2')
feltéve, hogy
c1 - 700 = e1 - w1
c2 - 600 = n1 - s1
a1 - 700 = e1' - w1'
a2 - 600 = n1' - s1'
a1 -1000 = e2' - w2'
a2 - 0 = n2' - s2', c1 - a1 = e'' - w'',
c2 - a2 = n'' -s''
és minden változó >=0
Hogy megértsük a feltételek jelentését, figyeljük meg,
hogy ha az öntési terület keletre van az acélgyártás
```

Hogy megértsük a feltételek jelentését, figyeljük meg, hogy ha az öntési terület keletre van az acélgyártás területétől, akkor el>0 and wl = 0, míg, ha az öntés nyugatra van az acélgyártás terü-letétől, akkor el = 0 és wl>0. Lehetetlen, hogy el és wl mindketten pozitívak legyenek (oszlopaik egymás negatívjai minden feltételben, úgy hogy nem lehetnek mindketten bázisváltozók). Mivel csak egyike a wl és el, stb-nek lesz pozitív, a célfüggvény tényleg a napi utak összköltségét adja.

6. Az állítás igaz az első pivot-transzformációt megelőzően. Tegyük fel, hogy az első transzformációt egy olyan k pivotsorban hajtjuk végre, melyben x_i ' és x_i '' mindegyikének nemzéró az együtthatója. Miután hozzáadjuk a k-adik sor egy többszörösét bármely másik sorhoz, az x_i ' és x_i '' együtthatója minden sorban még mindig egymás negatívja lesz. Ha az első pivot-transzformációt egy olyan sorban hajtjuk

végre, amelyben x_i ' és x_i '' együtthatója 0, akkor nem változtatjuk meg ezeknek a változóknak az együtthatóját egyetlen sorban sem, s az előbbi állítás itt is fennáll. Így a kiinduló állítás igaz egy pivot-transzformáció után is. Teljesen ugyanilyen okoskodás adja, hogy az állítás két pivot-transzformáció után is fennáll. Az okoskodást az eddigiek szerint folytatva állításunk bizonyításra kerül.

7. Legyen St = a t-edik hónapban eladott nadrágok száma, Pt = a t-edik hónapban készített nadrágok száma,Wt = a t-edik havi termeléshez rendelkezésre álló dolgozók száma, Ft = a t-edik hónap elején elbocsátott dolgozók száma, Ht = a t-edik hónap elején felvett dolgozók száma, és It = raktáron levő nadrágok száma a t-edik hónap végén.Ekkor a probléma egy helyes megfogalmazása LP feladatként a következő:

MAX 40 S1 + 40 S2 + 40 S3 + 40 S4 + 40 S5 + 40 S6 - 2000 W1

```
- 2000 W2
      - 2000 W3 - 2000 W4 - 2000 W5 - 2000 W6 - 1500 H1 - 1500
н2 - 1500 н3
      - 1500 H4 - 1500 H5 - 1500 H6 - 1000 F1 - 1000 F2 - 1000
F3 - 1000 F4
      - 1000 F5 - 1000 F6 - 5 I1 - 5 I2 - 5 I3 - 5 I4 - 5 I5 -
5 I6 - 10 P1
       - 10 P2 - 10 P3 - 10 P4 - 10 P5 - 10 P6
 FELTÉVE, HOGY
        2)
             W1 - H1 + F1 = 4
        3) - W1 + W2 - H2 + F2 =
        4) - W2 + W3 - H3 + F3 =
                                   0
        5) - W3 + W4 - H4 + F4 =
        6) - W4 + W5 - H5 + F5 =
        7) - W5 + W6 - H6 + F6 =
        8)
             S1 <= 500
        9)
             S2 <= 600
       10)
            S3 <= 300
            S4 <= 400
       11)
       12)
           S5 <= 300
       13)
            S6 <= 800
       14) S1 + I1 - P1 = 0
       15) S2 - I1 + I2 - P2 =
           S3 - I2 + I3 - P3 =
       16)
       17) S4 - I3 + I4 - P4 =
       18)
           S5 - I4 + I5 - P5 =
                                   0
       19)
             S6 - I5 + I6 - P6 =
                                   0
       20) - 200 W1 + 2 P1 <= 0
       21) - 200 W2 + 2 P2 <=
                               0
       22) - 200 W3 + 2 P3 <=
                               0
       23) - 200 W4 + 2 P4 <=
                                0
       24) - 200 W5 + 2 P5 <=
                                0
       25) - 200 W6 + 2 P6 <=
                                0
```

Ennek az LP feladatnak egy optimális megoldása:

A célfüggvény értéke:

1) 22750.00
Az egyes változók értékei az optimumban:

Változó	Érték
S1	450.000000
S2	450.000000
S3	300.000000
S4	400.000000
S5	300.000000
S6	800.000000
W1	4.500000
W2	4.500000
WЗ	4.500000
W4	4.500000

```
W5
           4.500000
W6
           4.500000
Н1
           0.500000
Н2
           0.000000
НЗ
           0.000000
H4
           0.000000
Н5
           0.000000
           0.000000
Н6
           0.00000
F1
F2
           0.00000
F3
           0.000000
F4
           0.000000
F5
           0.00000
           0.00000
F6
           0.00000
I1
Ι2
           0.00000
I3
         150.000000
Ι4
         200.000000
         350.000000
I5
I6
           0.00000
Р1
         450.000000
Ρ2
         450.000000
PЗ
         450.000000
Ρ4
         450.000000
P5
         450.000000
Р6
         450.000000
```

4. Fejezet, Áttekintő feladatok